Canada's Capital University

Mathematics Tutorial Series

Numerical Integration-1
First, "integration" here means something like
"Arriving at a whole by building up from the parts"
Suppose we want the total flow of water in a pipe and have only a gauge that measures rate of flow (in m^{3} / sec say).

Suppose we measure:

Time	Flow rate $f(t)$ at time t
$t=0$	$7 \mathrm{~m}^{3} / \mathrm{sec}$
$t=5$	$10 \mathrm{~m}^{3} / \mathrm{sec}$
$t=10$	$4 \mathrm{~m}^{3} / \mathrm{sec}$

What is the total flow from $t=0$ to $t=10$?
We write the exact flow as:

$$
\int_{t=0}^{t=10} f(t) d t
$$

From the measurements we can only approximate.
Two issues:

1. How shall we approximate?
2. How shall we make the approximation better?

Approximation

Time	Flow rate $f(t)$ at time t
$t=0$	$7 \mathrm{~m}^{3} / \mathrm{sec}$
$t=5$	$10 \mathrm{~m}^{3} / \mathrm{sec}$
$t=10$	$4 \mathrm{~m}^{3} / \mathrm{sec}$

Scenario 1. Use the average flow rate from $t=0$ to $t=10$.

$$
10 \frac{7+10+4}{3}=70 \mathrm{~m}^{3}
$$

Scenario 2. Use the average flow on each of the two intervals

First interval, average flow rate is $\frac{7+10}{2}=8.5 \mathrm{~m}^{3} /$ sec

Second interval average flow is $\frac{10+4}{2}=7 \mathrm{~m}^{3} / \mathrm{sec}$
Complete approximation of flow:

$$
5 \frac{7+10}{2}+5 \frac{10+4}{2}=77.3 \mathrm{~m}^{3}
$$

This is called the "Trapezoidal Method".
It gives better approximations as we shorten the intervals for measurement.

Where do the trapezoids come in?

So

$$
5 \frac{7+10}{2}+5 \frac{10+4}{2}=77.3 \mathrm{~m}^{3}
$$

is the sum of the areas of the two trapezoids.

Example 2:

Measurement interval $=0.5$

0	3
0.5	4.23
1	5
1.5	4
2	2
2.5	2.2
3	1.8

$0.5 \times\left(\frac{3+4.23}{2}+\frac{4.23+5}{2}+\frac{5+4}{2}+\frac{4+2}{2}+\frac{2+2.2}{2}\right.$
$\left.+\frac{2.2+1.8}{2}\right)=9.92$

Suppose the black curve is the actual flow rate.
How well did we do?

Calculation

$0.5 \times\left(\frac{3+4.23}{2}+\frac{4.23+5}{2}+\frac{5+4}{2}+\frac{4+2}{2}+\frac{2+2.2}{2}\right.$

$$
\left.+\frac{2.2+1.8}{2}\right)
$$

$0.5 \times\left(\frac{3}{2}+4.23+5+4+2+2.2+\frac{1.8}{2}\right)$

Summary

1. The Trapezoidal Method gives an approximate value for the integral = the total flow
2. The Trapezoidal Method uses a straight-line approximation of the curve.
3. This is a numerical technique; it gives a number
4. Using more and shorter measurement intervals gives better estimates
5. Many modeling situations can only be analyzed by numerical methods
